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Abstract

In the paper by Mattikalli et al. [5], the stability of an assemblage of frictionless contact-
ing bodies with uniform gravity was considered. The problem of finding a stable orientation
for such an assembly was formulated as a constrained maximin problem. A solution to
the maximin problem yielded an orientation of the assembly that was stable under gravity;
however, if no such orientation existed, then the solution to the maximin problem yielded the
most stable orientation possible for the assembly. The maximin problem was solved using
a numerical iteration procedure that solved a linear program for each step of the iteration.
In this paper, we show that the stability problem can be considered a variant of standard
zero-sum matrix games. A solution to the maximin problem can be found by solving a
single linear program.



(a) (b)
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Figure 1: Body B is fixed in place, while bodies A and C are free to move. (a) The assembly
is unstable for the current choice of g. (b) The assembly has been reoriented so that it is
stable.

1 Introduction

In Mattikalli et al. [5] we showed how a stable orientation for an assembly could be for-
mulated as the solution to a constrained maximin problem. We define an assembly as a
collection of frictionless contacting rigid objects, one or more of which is assumed to be
fixed in place (for example a floor, a supporting surface such as a table, or an object held
by a gripper). All objects in the assembly are initially motionless and are acted upon by
an external force mg where m is an object's mass and g is a unit vector pointing straight
down. If the objects remain motionless under the influence of the gravity field, we say the
assembly is stable. Otherwise, the assembly is unstable.

An assembly that is unstable in one orientation might be made stable by a change of
orientation (figure 1). Given an unstable assembly, we would like to be able to reorient
the assembly to make it stable, if possible. However, rather than actually rotate objects in
our frame of reference, we will instead choose a different unit gravity vector for which the
assembly is stable, if such a gravity vector exists (figure 2). When we say we are searching
for a stable orientation then, we mean that we are searching for a gravity direction g for
which the assembly is stable. If it turns out that the assembly is unstable no matter what
direction of gravity we choose, then we would like to determine an orientation (that is, a
gravity direction) which makes the orientation as stable as possible. We will define the
metric used to measure stability in section 5.

The formulation we use for finding the most stable orientation is based on energy
considerations. If an assembly is initially at rest, the kinetic energy T of the assembly is
zero. If the assembly is unstable and begins to move, then T must increase. Since the only



Figure 2: Rather than actually rotate objects, a new gravity direction g is chosen so that the
assembly in figure Ia is stable.

external force is gravity, which is conservative, if T increases the potential energy U of the
assembly must decrease. Thus, if every motion that does not cause interpenetration between
objects is "uphill" (that is, causes U to increase), then the configuration is stable. Our goal
then is to find a direction of gravity so that all allowable motions are "uphill." If this is
not possible, we want to orient gravity to minimize the steepness of the most "downhill"
allowable motion.

The optimal direction for g in Mattikalli et al. [5] was defined in terms of the solution to
a constrained maximin problem. The maximin problem was solved by numerical iteration.
Each step of the iteration involved solving a linear program. We will show that a solution to
this maximin problem can be found by solving a single linear program, eliminating the need
for an iterative solution method. The insight into this reduction lies in viewing the maximin
problem as a variant of two-person zero-sum matrix games. Two-person zero-sum matrix
games were first shown to be equivalent to linear programs by Dantzig. Mattikalli et al.
discusses previous work on stability problems.

2 Motion Constraints

We will represent possible motions of an assembly in terms of virtual displacements. Let
6pi = (6ri, 60i) represent a displacement of the ith body in the system, with 6ri and 60i
vectors in R3. The vector 6ri denotes a translational displacement of the ith part, while 60i
denotes a rotation of magnitude 1160il1 of the body around its center of mass. The axis of
the rotation is along the b0, direction.

Because of contact between bodies, not all displacements are allowable. Consider
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Figure 3: Contact between bodies A and B. Motion constraints are formulated in terms of
the relative motion of the bodies at points d and d'.

figure 3 where bodiesA and B contact. IfbodyA undergoes a displacement bp', = (bra, 60,,),
then point d, as attached to body A, undergoes a particular displacement bdd,. Similarly, a
displacement bpb of body B causes a displacement bdb of point d, as attached to body B. To
prevent interpenetration from occurring, the relative displacement bd,,-bdb cannot have any
component opposite the unit normal direction fi. We can express this as the constraint

fi- (6dd, - 6db) _0. (1)

Similarly, we also need to prevent interpenetration from occurring at point d' by requiring
that ii- (6dd - 6d',) > 0.

Note that we do not have to generate a constraint for every point of contact between
two bodies. It is only necessary to place constraints on the vertices of the convex hull of the
contact region. In this paper, we assume that all contact regions are polygons (or degenerate
polygons), which means that we have to formulate constraints for only finitely many contact
points. Baraff[2] discusses the difficulties in dealing with nonpolygonal contact regions.
We will assume that the motion constraints of the assembly can be expressed by a finite
number of constraint inequalities in the form of equation (1), all of which must be satisfied.
(Palmer[6] discusses the complexities that arise when only a subset of the motion constraints
need to be satisfied by a given motion.)

For the remainder of the paper then, we will consider assemblies whose motion con-
straints are expressed in terms of m contact points between the bodies. Let the ith contact
point of the assembly be a contact between bodies A and B at the point di in a global frame
of reference. Let fii denote the unit surface normal, pointing outwards from B towards A at
di. Let c,, and Cb denote the position of the center of mass of bodies A and B respectively.
If A undergoes a displacement bpP = (rF,, 60,,) then di, as attached to A, undergoes the
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displacement
6ra + 60a x (di - ca).

Similarly, for a displacement 6Pb = (6rb, 6 0 b) of body B, di's displacement, as attached to
B, is

6rb + 6 0 b x (di - Cb).

The motion constraint at the ith contact point is therefore

hij- (r5a + 60a x (di- c,,) - 6r, - 60b X (di- Cb))> 0. (2)

Note that if contact occurs between a body A and a fixed object B, we write a constraint
without referring to a displacement of the fixed body, as

fi,. (6ra + 60a x (d,-ca)) > 0. (3)

To simplify bookkeeping, we do not count fixed objects as bodies in our assembly; rather,
we simply note when regular movable objects are in contact with fixed objects, and generate
the appropriate motion constraint, such as equation (3).

Since each constraint is a linear inequality on the 6r and 60 variables, we can express
the simultaneous satisfaction of all the constraints as one large linear system. If the vector
6p denotes the virtual displacements of an assembly with n bodies, that is

6p0
6r.

then we express all m motion constraints by writing

J6p > 0 (4)

where J is an m x 6n matrix (since each displacement pair (6rj, 606) has six components) and
0 is an appropriately sized vector of zeroes. (We will denote row vectors, column vectors,
and matrices whose entries are all zero simply by 0 throughout this paper. The dimension
of 0 should be clear from the context in which it occurs.) The coefficients of J are computed
according to the constraint equations (2) and (3).

Using this notation, we can say that a legal motion for an assembly is a displacement
6p that satisfies J6p > 0. Note that the displacement 6p = 0 always yields a legal motion
(the null-motion). Also, if bp # 0 is a legal motion and a is a nonnegative scalar, then a6p
is also a legal motion, but -a6p is not.

3 Determining Stability

Determining if an assembly is stable under a particular direction of gravity is fairly straight-
forward. In this section, we describe two different methods for determining if an assembly
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is stable. The first method is based on potential energy considerations, while the second
method considers the contact forces that arise at contact points. Both methods involve linear
programming. The latter method was used in work by Blum, Griffith, and Neumann[3],
and is not limited to frictionless assemblies. In the next section, we show how both of
these methods for determining stability can be modified to find a stable orientation for the
assembly (if it exists).

3.1 Potential Energy

Suppose that an assembly undergoes a virtual displacement 6p. The change in potential
energy 6U corresponding to the displacements 6p, = (6ri, 60j) of the n bodies is

n

6U= - ,Mig 6r, (5)

where Mi is the mass of the ith body. If we define the matrix M as the 3 x 6n matrix

0oM0 0 0 0 0 ... M0 0 0 0 0
M= MI 0 0 0 0 ... 0 M0 0 0 0 0)

0 0 M 0 0 0 ... 0 0 M 0 00

then we can write

,Mi•r, = M6p (6)
i=1

and thus
6U = -g . M6p = -gTM6p. (7)

As stated in tne introduction, if for a given gravity direction g all legal motions yield
6U > 0, then the assembly is stable. We are therefore interested in knowing the minimum
value that 6U can assume over all legal motions. If we let ý denote this minimum, by
writing

= min- gTMbp (8)
J6p_>O

then the structure is stable if Z > 0. Note however that the null-motion bp = 0 is always
legal. and yields 6U = 0. Thus, Z is bounded above by zero, and we can say simply that the
structure is stable if t = 0.

The value Z can be determined by linear programming. However, as it stands, if t :A 0,
then there must exist a legal 6p for which 6U < 0. In this case, the minimum value of 6U
is -oo, since a displacement ot a6p is legal and yields an energy change of a6U < 0 for
any a > 0. This is a consequence of the constraint J6p >_ 0, which constrains the motion
direction 6p, but not its magnitude.

Anticipating future development, it is useful to bound the magnitude of the displace-
ments bp considered in equation (8). Since we would like to be able to use linear program-
ming techniques, we would like to bound 6p's magnitude with linear constraints. We can
do this straightforwardly by redefining Z as

= min gTM6p. (9)

116p110 S<I
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The infinity norm Ijvjk5. of a vector v is the maximum absolute value over all the components
of v. The condition II6plI < 1 constrains all components of 6p to have magnitude less
than one. Equation (9) can then be solved by linear programming. If the solution 2 is zero,
then thL assembly is stable. Otherwise, t is a (finite) negative value, and the assembly
is unstable. (Note however that the displacement 6p which yields the minimal 2 = 6U
only approximately indicates the directioa of impending motion of the assembly. In order
to exactly determine the impending motion direction, it is necessary to solve a quadratic
programming problemi[ !1.)

3.2 Contact Forces

Instead of looking at motion directions which decrease potential energy, we can consider
the contact force that arises at each of the m contact points of the assembly. Since we are
dealing with frictionless contacts, we know that the contact forces will act normal to the
contact surfaces. Thus, at the ith contact point, we consider a contact force fui that acts on
body A of the contact, and a contact force - fifij that acts on body B of the contact, with f,
the unknown scalar magnitude of the force. Since hij is directed from B towards A, and since
contact forces must be repulsive, the magnitude f, must be nonnegative; that is, fi > 0.

Let the vector of contact force magnitudes f, be denoted by f. The net force F. E R1
acting on thejth body of the assembly can be written as

51

V = Z sjififii + M,g (10)
i=1

where sji is either 1, - I, or zero. If thejth body is not involved in the ith contact, then s,, is
zero. If the contact force exerted on thejth body from the ith contact point is ffi,, then sj,
is 1. Otherwise, the contact force acting on thejth body is -fifij, and sj, is - 1.

The net torque -r E R3 acting on thejth body of the assemb'y is similarly written as
'I

-rj =Z sj,(di - c) ×fx (!)
i='

where di is the location of the ith contact point, and cj is the location of the center of mass of
thejth body. The scalars sj, are the same as in the previous equation. The , are independent
of g since a uniform gravity field does not exert a torque. If we define the 6n-vectors Q and
G as the collections

F, Mg

and G= i , (12)

we can write
Q=Af+G (13)
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where A is a 6n x mn matrix whose coefficients are given by equations (10) and (11).
Because the assembly is frictionless, its impending motion is completely determined[41.

If there exist repulsive contact forces such that the net force and torque on every body is
zero, then such forces will arise at the contact points, and the assembly is stable and will
not move. Thus, we can determine stability by simply checking whether there exists f such
that

Q=Af +G=O and f > 0. (14)

The existence of a suitable f can L,_ determined by linear programming.

4 Finding a Stable Orientation

Suppose that for an assembly and a given gravity direction we find that the structure is
unstable, using either of the two methods described in the previous section. Can we find a
new direction for g which will make the structure stable? In this section, we show how the
contact-force formulation to determine stability can be trivially modified to find a value for
g (if it exists) which makes the assembly stable.

In section 3.2, we were searching for a vector f so that

Q=Af+G=O and f>0 (15)

where G depended upon the known value of g. If however we treat g as an additional
unknown, all we need to do is simply check and see if there exist values for f and g that
satisfy Q = 0, indicating that the assembly is stable. That is, if we can find vectors g and
f such that

Q=Af+G=0, f>0 and g111 2 = 1 (16)

(where G is defined in terms of g by equation (12)) then the assembly is stable in orientation

g. If equation (16) has a solution, we can find it by linear programming, although a slight
modification is required.

The constraint that g be a unit vector (that is, 11g9[ 2 = 1) cannot be enforced in a linear
program. However, it is not necessary to search among only unit vectors; it is merely
necessary to make sure that we search among all possible directions. We can do this by
considering vectors g such that u1gh' I. (For a vector v, hlvjh, = Ej Ivil.) However, since
the set of vectors 1Igl I = I is nonconvex, we need to split it up into pieces. Intuitively,
Ilgll I= I forms a "unit diamond" about the origin, consisting of eight planar facets. Let
the set S, be defined as the set of vectors g = (g•, gy, g,)T satisfying

g., gy, g& > 0 and g + gy + gz=l. (17)

Similarly, define S2 to consist of vectors satisfying

-g", gy, g?>O and -g +g.++g,=! (18)

and so on through all the eight sign permutations of g, gy and g,. Using this notation, we can
look for a g that makes the assembly stable by seeing if any of the eight linear programs

Q=Af+G=0, fŽ_0, and gESi (I <i<8) (19)

7



have a solution f and g.I
Note that if an assembly can be made stable, we find the value of g which makes it stable.

However, when no such g exists, all we kPow is that the linear program is unsatisfiable.
Even if an assembly has no stable orientation, it would still be desirable to know what
orientation g comes the closest to making the assembly stable. In the next section, we will
show how such a direction g can be found by linear programming using the potential energy
formulation.

5 Finding the Most Stable Orientation

Modifying the contact-force formulation to find a stable orientation (if it exists) was straight-
forward. In working with the potential energy formulation though, we are not limited to
simply finding a stable orientation, or reporting that the assembly is unstable. Instead, we
can modify the potential energy formulation so that we can find either a stable orientation,
or, for unstable assemblies, the most stable orientation possible.

Let us recast Z as a function of g by writing

Z(g) = min --gTMbp. (20)
J6p>O

1I6pliI.:•

If g is an orientation for which the assembly is stable, then Z(g) = 0. Otherwise, the
assembly is unstable, and 2(g) < 0. We will use the function Z(g) as a measure of the
instability of an assembly under gravity g. Since there may be no value g for which Z(g) = 0,
we will search for a value of g that maximizes ý(g). If this maximum is zero, then we
will have found a stable orientation. Otherwise, we will have found the "most" stable
orientation, as defined by the metric 2(g). In the remainder of this paper, we will restrict
g to lie in S1, by writing g > 0 and [gi = --- gI = 1. In searching for the most stable
assembly, we will have to perform eight different searches; one for each partition S,. All
statements and methods made hereafter involving g E S, can be applied to the other seven
cases of g E Si.

5.1 Maximin

To find the most stable orientation, we are trying to solve a maximin problem. That is, we
are trying to solve

max ý(g) = max ( min Mp. (21)
go g>O Jbp>OEg,=1 Eg,=1 \ 116P11.!<5,

'We could also partition gravity by considering the unit cube of directions JiglJ. = 1. The natural division
here would be to use sets S, through S6, with S, defined by g& = I and - I < g,, g, < I and S, by g" = - I
and - I < gy, g: < I, and similarly for S, through S6. This would work just as well as considering the set
Ilgl[1 = I. The only reason for using the metric u~gh'1 = I in this section is that we are forced to use this
metric in subsequent sections.
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Constrained maximin problems are in general hard to solve. However, problem (21)
has a form similar to a maximin problem that is solvable by linear programming. Given
an m x n matrix A, the minimax theorem of matrix games, first proved by Von Neumann,
states that

max (minyTAx min max yTAx) y(22)
Exi=I \(Ey=1 Eyj=I Exi=I

where x and y are vectors in Rm and R' respectively. Furthermore, the value of x for which
the maximum on the left is attained can be found by solving a linear program; the solution of
the dual linear program gives the value of y for which the minimum on the right is attained.

The maximin problem problem (21) is similar to problem (22) in that the constraints on
g are g > 0 and E gi = 1. However, the constraints on the inner variables bp have quite a
different form. It turns out that a variant of the linear program used to solve problem (22) for
x can be used to solve problem (21) for g. In section 6 we will exhibit a pair of dual linear
programs which find a solution g to problem (21) and a solution 6p to the dual problem

min (max -gTM6p) (23)J6p>O g>O
116pll• I : S=

It will also turn out that

max Z(g) = max (min gTM6P)= min (max -gTM6p). (24)
gO g>O Jbp>O J6p>O g>O

For now however, it will be more instructive to simply hope that equation (24) holds,
and use physical intuition to formulate a linear program that solves equation (23) for 6p.
Assuming that equation (24) holds, the solution of the dual of this linear program will yield a
vector g which maximizes problem (21). The intuition which allows us to directly formulate
the necessary linear program lies in viewing problem (23) as a competition, or game (just
as problem (22) is viewed as what is known as a "two-person zero-sum game").

5.2 A Particle versus Gravity

For illustrative purposes, let us greatly simplify the problem. Our assembly, for the moment,
consists of a single particle in R2, with degrees of freedom 6r, and 6r, and unit mass. Our
gravity vector likewise has two components gx and gy. To begin with, we will assume that
there are no constraints on 6r, or 6ry, except for the bounds 16rx( < 1 and t6ryI < I. We
will search for the most stable orientation by finding the solution of

min (max -L
16r•,1v6rY<_ (g g ,g>0!

9,+ ,-_
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where

L" ) = gb6r. + gy6ry.

Let us simplify this by removing the minus sign; this swaps the "min" and "max" functions,
yielding

max<, (min Lm (25)
\g,+gy=l

Normally, we think of forces such as gravity as having an "upsetting" effect on objects
in that they cause objects to move unless balanced by other forces. Objects, on the other
hand, have inertia-they seek to stay where they are unless compelled to move by forces.
We can view equation (25) as a game by changing our viewpoint slightly. We will regard
both the force of gravity, and the particle, as players in a game, each with a particular
purpose. On one side, we have player "Particle." Rather than stand still, Player Particle
would like to move as much as possible in the direction of gravity chosen by Player Gravity.
Mathematically, player Particle seeks to maximize L. As a result, Particle is very lazy.
While Particle is quite happy to make L positive by moving downhill (that is, in the direction
chosen by Gravity), Particle is so lazy that rather than move uphill the slightest bit, making
L negative, Particle would rather just stand still.

Conversely, Player Gravity's goal is to pick a gravity direction so that L is as small as
possible. In terms of the game, Gravity needs to pick a nonzero direction that causes the
particle to want to move as little as possible (which, as we said, is opposite our normal
depiction of gravity as an upsetting force on systems). Gravity is therefore annoyed when
the particle actually moves in the direction of gravity, since this makes L negative. Gravity
would prefer the particle not to move at all, which makes L zero.

Now suppose that the game is played without any constraints on Particle's motion.
(Clearly, Particle has the advantage here.) Particle reasons that by not moving at all (that
is, by choosing br, = bry = 0), a value of L = 0 is attained. However, since Particle knows
that Gravity cannot choose negative values for g. or gy, Particle chooses 6r1 = bry = 1. (If
Gravity wasn't restricted in this way, it would be quite a different story, and Particle would
be advised to stick with br,, = bry = 0.) As it is though, if Particle picks br, = bry = I then
no matter what Gravity chooses, L = I and Particle wins, getting to move downhill. (As
we said, this was a pretty lopsided game.)

Suppose however that Particle is in contact with an obstacle and must satisfy the motion
constraint

br, + bry < 0 (26)

along with the regular bounds 16r, _< 1 and 16ryl <_ 1. What does Gravity do in this case?
Gravity reasons as follows: "No matter what direction I pick, Particle always wants

to go in that direction. Well, I'll fool Particle this time-I'll just pick a direction Particle
can't go in. I'll choose g, = gy = 1/2. That way, I can guarantee that L < 0-because if
Particle is foolish enough to make 6r, > 0 and thus 6ry < 0, I'll switch to gy = I. And
likewise, if Particle makes 6r, < 0, I'll make g. = 1. But wait! What if after I pick g, = 1,
Particle picks a new direction so that L > 0? Well, I can at least guarantee that Particle

10



(illegal side)

allowable gravity

vo(g, gy)
allowable motions(&-, &-)

gX

Figure 4: The motion of the particle is constrained because it is in contact with a wall. The
optimum strategies are to choose gx = gy = 1/2, and 6rx = 6ry = 0.

can't move downhill by sticking with gx = gy = 1/2. There's no way Particle can move in
that direction at all."

For its part, Particle reasons: "If I choose 6r, < 6ry, then Gravity will pick gx = 1, to
make L as small as possible. But if I choose 6ry < 6r,, then Gravity will pick gy = 1. Aha!
I'd better make it so that the smaller of the 6rx and 6ry is as big as possible. But wait! If
I choose 6r, > 0, then I have to pick bry < 0 because of my motion constraint. And if I
choose 6ry > 0, then I'd have to make 6r, < 0. Either way then, I'd be moving uphill,
which means L would be negative. Forget it! I'll just choose 6r, = 6ry = 0 and not move
at all!"

Particle's strategy is particularly easy to formulate as a linear program. Knowing that
Gravity will focus attention on the smaller of brx or bry (and thus achieving a value of L
equal to the smaller of the two) Particle's strategy is simply to choose dr" and bry such that
the smaller of the two is as large as possible (given the constraint br, + bry :_ 0).

Now let us apply this reasoning to equation (24), but with the minus sign removed:

max ( min g .Mp) (27)
J6pŽO g>o

Consider the vector Mbp, which has length three (assuming we are working with a three-
dimensional assembly). Given a vector 6p, the g that minimizes gTMbp will be such that
gi = I where (MWp)i is the smallest element of the vector Mbp. Clearly then, the maximum
of equation (27) occurs when bip is chosen so that the minimum component of M6p is
maximized. Such a lip can be found by linear programming. Then, assuming equation (24)
is true, the solution to the dual of this linear program will yield the choice of g which

!!



maximizes Z(g). In the next section, we explicitly describe a dual pair of linear programs
that enable us to maximize 2(g) and prove that equation (24) holds.

6 Linear Programming Solutions of the Maximin Problem

In this section, we exhibit dual linear programs to solve equations (21) and (23), but with
the minus sign removed. That is, we will find a solution vector g to the problem

min ( max (28)
g>_O J6p>O

and a solution vector 6p to the problem

max min L (29)J~p>!O /g>O

where L = gTMbp. The goal is to make the optimal solutions to the dual linear programs
satisfy a condition called a "saddle-point condition." A pair of vectors g* and bp* satisfying
the constraints on g and bp in problems (28) and (29) is called a saddle-point if for all g and
bp which also satisfy the constraints of the problems, the relation

g *TM6p g*TM6p* < grTMp*

holds. In terms of the game of the previous section, a saddle-point indicates a pair of
strategies such that neither player is inclined to change their strategy, providing the other
player holds constant as well. We will show that the solutions to the dual linear programs
satisfy the saddle-point condition, and then prove that any vectors that satisfy the saddle-
point condition solve problems (28) and (29).

Let us define the vector b by b = (1, 1, I)T. In what follows, a feasible vector g is a
vector satisfying g Ž_ 0 and E gi = bTg = 1. To express feasibility for a vector 6p, let I
denote the 6n x 6n identity matrix, and let e be a vector of length 6n, with every element
equal to one. If we define the vector d of length m + 12n and the (m + 12n) x 6n matrix B
by

d 'e and B = (30)

e -

then Bbp < d implies

B6p= 6p < el. (31)
k.-6p eJ

This in turn implies Jbp > 0 and -e < bp _< e which is equivalent to 116p~l... 1. Thus,
we will say that a vector bp is feasible if Bbp < d.
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6.1 Primal and Dual Linear Programs

Let v be a scalar and consider the (primal) linear program

max v subject to b0 -MB) ( )v (0 (32)

If we view the constraint bv - Mbp < 0 as Mbp > by, we see that to maximize v we need to
make M6p as large as possible. In particular, v is bounded by the maximum that the smallest
element of Mbp can attain, given the constraints on bp. Thus, this linear program exactly
captures the strategy articulated at the end of section 5.2 to choose 6p. Since setting v = 0
and b5p = 0 satisfies the conditions in problem (32), it is clear that a solution to problem (32)
exists. Note that for any pair (v, 6p) which satisfies the conditions in problem (32), B6p < d
which implies that 6p is feasible, as defined above.

The dual linear program to problem (32) is

min (0, ( dT ) subjectto (gTST) b -M =(1,0), g,s >0 (33)min (0, Br

where s E Rr+I2". Note that any g satisfying the conditions in problem (33) satisfies g > 0
and gTb = 1, and is thus feasible.

6.2 Saddle-Point Condition

Let g* and s* be optimal solutions to problem (33) and let v* and 6p* be optimal solutions
to problem (32). The duality theory of linear programming[71 states that the optimal values
of the two linear programs are equal: that is,

v*= (0(,d*T) ( =dTs*. (34)

The duality theory also states that

(g*T" s*T) (d - B6p* ) = . (35)

The fact that both vectors in this equation are nonnegative (due to the conditions in the
linear programs) means that

g*T(Mbp* - bv*) = 0 (36)

or
g*Tmbp* = g*Tbv* = v" (37)

since g*Tb = 1.
Since g* and s* satisfy the conditions in problem (33), -g*TM + s*TB = 0 or equiva-

lently, g*TM = s*TB. For any feasible 6p then,

(g*TM)6p = (s*TB)6p = s*T(B6p) < s*Td (38)
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since B6p < d and s* is nonnegative. Using the fact that s*Td = v* = g*TM6p*, we
obtain

g*TM6p _ g*TM6p* (39)

for all feasible 6p.
To obtain the other half of the saddle-point condition, observe that M6p* _ bv*. Since

g _> 0 and gTb = I for any feasible g,

gT(Mbp*) Ž_ gr(bv*) = (gTb)v* = V = g*rM6p*. (40)

Combining the previous two inequalities gives the saddle-point condition

g*gTM6p _ g*TM6p* _< grTMp*. (41)

for any feasible g and 6p.

6.3 Maximin Result

We claim that problem (28) attains its minimum value (and thus ,(g) attains its maximum
value) for g = g*, and that problem (29) attains its maximum value for 6p = bp*.
Furthermore, these values are equal. In what follows, we restrict our attention to feasible
vectors bp and g (that is, we will not write out the feasibility conditions).

To show that g* minimizes problem (28) we need to show that

max g*TM6p < max gTM6p. (42)6P 6P

for all feasible g. From the saddle-point condition, g*TM6p • g*TMbp* for all feasible 6p,
so max g*TM6p is bounded from above by g*TMbp*. Since g*TM6p* :5 grM6p* for any6p
feasible g, we have

max g*TMbp < g*MTMbp* < gTMbp* < max gTM6p (43)

6p -

for any feasible g.2 Thus,

mn (maxgTM6p) = max g*TM6p _ g*TM6p*. (44)

Similarly, the saddle-point condition yields

min gTM6p <_ g*TM6p . g*TM6p* _< mingTM6p* (45)
g g

for all feasible 6p, so 6p* maximizes problem (29) and

g*TM6p* < mingTM6p* = max (mingTM6p). (46)

2The inequality gTMbp* <_ max6p gTM6p follows from the fact that maxtp gTM6p is greater than or equal
to gTM6p for any choice of 6p. In particular then if we choose 6p = 6p*, max6p grM6p >_ grMbp*.
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This proves that g = g* and 6p = 6p* are optimal for problems (28) and (29) respectively,
and

min apx grM6P) - g*TM6p* -< max \min gTM6P) (47)

Thus, we can find a value of g which maximizes 2(g) by solving the linear program of
equation (33). The motion 6p = bp* which minimizes 65U for the orientation g* according
to the constraints 116pliIo :5 1 and J6p _> 0 can be found by solving the linear program (32).

Finally, we can use the optimal vectors g* and 6p* to obtain

max (mn gTM6p)= mn gTM6p* < g*TM6p* < max g*TM6p = min (maxgTM6p)

which yields
max (mnnL)p mn (mLaxL). (48)

Combining the inequalities in (47) and(48) proves that

min (max gTMbp) =g*TM6p* = max (in gTM6p) (49)
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